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Abstract. We consider quasi-periodic and periodic (cnoidal) wave solutions of a set of n-component dy-
namical systems related to Korteweg-de Vries equation. Quasi-periodic wave solutions for these systems
are expressed in terms of Novikov polynomials. Periodic solutions in terms of Hermite polynomials and
generalized Hermite polynomials for dynamical systems related to Korteweg-de Vries equation are found.

PACS. 02.30.Ik Integrable systems – 05.45.-a Nonlinear dynamics and nonlinear dynamical systems –
05.45.Yv Solitons

1 Introduction

We consider the reduced Gaudin magnet [1,2]

L(λ) =
n∑

j=1

Lj

λ − aj
+ B(λ), Lj(λ) =

(
S3

j S+
j

S−
j −S3

j

)
, (1)

where Sj satisfy n independent copies of the standard sl(2)
algebra

{S3
j , S±

k } = ±2δjkS±
k , {S+

j , S−
k } = 4δjkS3

k. (2)

Many dynamical systems, for example Garnier system,
Neumann system and multidimensional Hénon-Heiles sys-
tem [2] are interpreted as reduced Gaudin magnets [1,2].
New examples of reduced Gaudin magnets, general-
ized Garnier system, Rosochatius system and multidi-
mensional generalized Hénon-Heiles system are discussed
in [3]. All these systems are related to stationary hierar-
chy of Korteweg-de Vries (KdV) system of equations (see
for example [4–9]). The aim of present paper is to present
quasiperiodic and periodic solutions for dynamical sys-
tems related to KdV equation and for associated reduced
Gaudin magnets. The authors have already discussed
quasiperiodic and periodic solutions associated with Lamé
and Treibich-Verdier potentials for the Garnier type sys-
tem [10–13]. We also mention the method of construct-
ing elliptic finite-gap solutions of the stationary KdV and
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AKNS hierarchy, based on a theorem due to Picard, pro-
posed in [14–17], as well the method developed by Smirnov
in a series of publications: the review paper [19] and [20].
Elliptic AKNS solutions have been characterized in [17]
and Trebich-Verdier potentials were fully analyzed in [18].

2 Novikov, Hermite and generalized Hermite
polynomials

In present paper our construction is based on Novikov
polynomials [21] F (x, λ) in λ of degree n, which are
solutions of the following nonlinear differential equation

1
2
FFxx − 1

4
F 2

x − (λ + u(x))F 2 +
1
4
ν2(λ) = 0, (3)

where u(x) is a real finite-gap potential given by Its-
Matveev formula [22] and ν(λ) is a polynomial of degree
2n + 1 whose zeros are the branch points of the curve
ν2 = 4

∏2n
j=0(λ − λj) or in another form equation (3) is

written by

1
2
FFxx − 1

4
F 2

x − (λ + u(x))F 2 +
2n+1∑
j=0

λ2n+1−j c̃j = 0,

(4)

with c̃0 = 1. We seek solution of equation (4) as fol-
lows [23], F0 = c0 = 1

F =
n∑

k=0

n−k∑
m=0

λkcmFn−k−m, F1 = −1
2
u(x), (5)
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where for l > 1 we have

Fl =
1
8

l−1∑
s=1

(2Fxx;sFl−s−1 − Fx;sFx;l−s−1

−4FsFl−s − 4u(x)FsFl−s−1) − 1
2
u(x)Fl−1. (6)

As a result for first Fl, l = 1, . . . , 4 we have

F1 = −1
2
u, F2 = −1

8
uxx +

3
8
u2,

F3 =
5
16

uxxu +
5
32

u2
x − 5

16
u3 − 1

32
uxxxx,

F4 =
21
128

u2
xx − 35

64
uxxu2 +

7
32

uxuxxx − 35
64

uu2
x

+
35
128

u4 +
7
64

uuxxxx − 1
128

uxxxxxx,

where the following relations hold on

c1 =
1
2
c̃1, c2 =

1
2
c̃2 − 1

8
c̃2
1,

c3 = −1
4
c̃2c̃1 +

1
16

c̃3
1 +

1
2
c̃3,

c4 =
1
2
c̃4 +

3
16

c̃2c̃
2
1 −

1
4
c̃3c̃1 − 1

8
c̃2
2 −

5
128

c̃4
1.

The first few Novikov polynomials explicitly read,

F = λ − 1
2
u +

1
2
c̃1, n = 1

F = λ2 + (−1
2
u +

1
2
c̃1)λ

− 1
8
uxx +

3
8
u2 − 1

4
c̃1u

+
1
2
c̃2 − 1

8
c̃2
1, n = 2

F = λ3 + (−1
2
u +

1
2
c̃1)λ2

+ (−1
8
uxx +

3
8
u2 − 1

4
c̃1u +

1
2
c̃2 − 1

8
c̃2
1)λ

+
5
16

uuxx +
5
32

u2
x − 5

16
u3 − 1

32
uxxxx − 1

16
c̃1uxx

+
3
16

c̃1u
2 − 1

4
uc̃2 +

1
16

uc̃2
1 −

1
4
c̃2c̃1

+
1
16

c̃3
1 +

1
2
c̃3, n = 3·

When u(x) is n-gap Lamé potential n(n + 1)℘(x) the
Novikov polynomials are reduced to Hermite polynomials.
When u(x) are Treibich-Verdier potentials we have ob-
tained a new polynomials called generalized Hermite poly-
nomials. Lamé polynomials can be derived from Hermite
polynomials when λ = λj , λj being the branch points. A
special case of Lamé polynomials are known as associated

Legendre polynomials. All the above mentioned polynomi-
als are used to derive exact solutions of dynamical systems
related to KdV equation.

Assuming that Novikov polynomial depend on “addi-
tional parameter” time t, the zero curvature representa-
tion for KdV hierarchy of equations have the following
form

Mt(λ) − Lx(λ) + [M(λ), L(λ)] = 0, (7)

where matrices L and M are given by

M(λ) =
(

0 1
Q(x, t, λ) 0

)
L(λ) =

( − 1
2Fx(x, t, λ) F (x, t, λ)

− 1
2Fxx(x, t, λ) + Q(x, t, λ)F (x, t, λ) 1

2Fx(x, t, λ)

)
.

The equation (7) is equivalent to

∂Q

∂t
= −2

[
1
4
∂3

x − Q(x, t, λ)∂x − 1
2
Qx(x, t, λ)

]
F (x, λ)

(8)

where Q(x, t, λ) = u(x, t)+λ in the case of KdV hierarchy.
Equation (8) is called the generating equation. The first
few equations of the KdV hierarchy explicitly read,

ut = ux, ut =
1
4
uxxx − 3

2
uux +

1
2
c̃1ux,

ut =
1
16

uxxxxx − 5
8
uuxxx − 5

4
uuxx +

15
8

u2ux

+c̃1(
1
8
uxxx − 3

4
uux) +

1
2
c̃2ux − 1

8
c̃2
1ux,

etc..

The Lax representation Lx = [M, L] yields the hyperel-
liptic curve obtained by direct computation

det(L(λ) − µI2) = 0, (9)

µ2 = −1
2
FFxx +

1
4
F 2

x + (λ + u)F 2 = −1
4
ν2,

generating the Novikov polynomials related to stationary
KdV hierarchy of equations.

3 Lax representation, integrals of motion
and interpretation as reduced Gaudin
magnets

3.1 Generalized Garnier type system

We consider the system [6,8,7,9]

d2

dx2
qj +

(
n∑

k=1

q2
k − aj

)
qj −

C2
j

q3
j

= 0, j = 1, . . . n, (10)
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where Cj , j = 1, . . . n are free constants and aj

given points. The system (10) is a completely integrable
Hamiltonian system related to the Korteweg-de Vries
(KdV) equation with the Hamiltonian

H =
1
2

n∑
i=1

p2
i +

1
4

(
n∑

i=1

q2
i

)2

− 1
2

n∑
i=1

aiq
2
i +

1
2

n∑
i=1

C2
i

q2
i

,

(11)

where the variables (qi, pi), i = 1, . . . n, pi(x) = dqi(x)/dx,
are the canonically conjugated variables with respect to
the standard Poisson bracket, {· ; ·}.

This system has the Lax representation [9]

dL(λ)
dx

= [M(λ), L(λ)],

L(λ) =

(
V (λ) U(λ)

W (λ) −V (λ)

)
, M =

(
0 1

Q(λ) 0

)
, (12)

which is equivalent to (10), where U(λ),W (λ),Q(λ) have
the form Q(x, λ) = λ−∑n

i=1 q2
i , a(λ) =

∏n
i=1(λ−ai) and

U(x, λ) = −a(λ)

(
1 +

1
2

n∑
i=1

q2
i

(λ − ai)

)
,

V (x, λ) = −1
2

dU(x, λ)
dx

, W (x, λ) = a(λ)

×
(
−λ+

1
2

n∑
i=1

q2
i +

1
2

n∑
i=1

1
λ − ai

(
p2

i +
C2

i

q2
i

))
·

The dynamical system with Hamiltonian (11) is related
to reduced Gaudin magnet via the identification

S3
j = pjqj , S+

j = q2
j , S−

j = −p2
j +

C2
j

q2
j

,

and with B(λ) given by

B(λ) =
(

0 1
−λ + 1

2

∑n
i=1 q2

i 0

)
. (13)

The Lax representation yields the hyperelliptic curve
det(L(λ) − 1

2ν12) = 0, where 12 is the 2 × 2 unit ma-
trix. The moduli of the curve generate the integrals of
motion H, Ii, i = 1, . . . , n,

ν2 = V 2(x, λ) + U(x, λ)W (x, λ). (14)

The curve (14) can be written in canonical form as,
ν2 = 4

∏2n
j=0(λ − λj), where λj �= λk are branching points.

From (14) and explicit expressions for U(x, λ), V (x, λ),
W (x, λ) we obtain

ν2 = a(λ)2
(

λ −
n∑

i=1

Ii

λ − ai
− 1

4

n∑
i=1

J2
i

(λ − ai)2

)
, (15)

where Ji = 2Ci and

Ii =
1
4

∑
k �=i

1
ai − ak

(
(qipk − qkpi)2 − C2

i qk

q2
i

− C2
kqi

q2
k

)
,

+
1
2
p2

i −
1
2
aiq

2
i +

1
4
q2
i

(
n∑

k=1

q2
k

)
+

1
2

C2
i

q2
i

·

The parameters Ci are linked with the coordinates of the
points (ai, ν(ai)) by the formula

C2
i = − ν(ai)2∏

k �=i(ai − ak)
, (16)

where i = 1, . . . n. The solutions of the system (10) in
terms of Novikov polynomials F (x, λ) are given as

q2
i (x) = 2

F (x, ai − ∆)∏n
k �=i(ai − ak)

, i = 1, . . . , n. (17)

where we assume, without loss of generality, that the
associated curve has the property c̃1 = 0 and ∆ =

2
2n+1

∑n
i=1 ai. For generalized Garnier system the points

ai lie in the lacunae [λ2i−1, λ2i], i = 1, . . . n and are
branch points in the case of Garnier system (10) with
C2

j = 0, j = 1, . . . , n.

3.2 n +1 dimensional generalized Hénon-Heiles type
system

We consider a generalized Hénon-Heiles type system with
n + 1 degrees of freedom [2] with Hamiltonian

H =
1
2

( n∑
j=0

p2
j

)
+ q3

0 +
1
2
q0

n∑
j=1

q2
j

+
1
4

n∑
j=1

(
ajq

2
j +

C2
j

q2
j

)
− a0

4
q0, (18)

where qj , pj , j = 0, . . . , n are the canonical coordinates
and momenta and a0, C

2
j , aj , j = 1, . . . , n are free constant

parameters. The function H for n = 1 is the Hamiltonian
of a classical integrable Hénon-Heiles system with the ad-
ditional term C2

1/q2
1 .

Next we will present (2 × 2) matrix Lax representa-
tion for generalized Hénon-Heiles system (18). The Lax
representation have the form

Lx = [M(λ), L(λ)], L =

(
V U

W −V

)
, M =

(
0 1

Q 0

)

(19)
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where U, W, Q [9] are Q(x, λ) = λ−q1, a(λ) =
∏n

i=1(λ−ai)
and

U(x, λ) = F (x, λ) = a(λ)


λ +

1
2
q0 − 1

16

n∑
j=1

q2
j

λ − aj


 ,

V = −1
2
Fx = a(λ)


−1

4
p0 +

1
16

n∑
j

qjpj

λ − aj


 ,

W = −1
2
Fxx + QF = a(λ)

(
λ2 − 1

2
q0λ

)

+a(λ)


1

4
q2
0 +

1
16

n∑
j=1

q2
j − 1

16
a0




+a(λ)
1
16


 n∑

j=1

p2
j

λ − aj
+

n∑
j=1

C2
j

q2
j

1
λ − aj


 ·

The dynamical system with Hamiltonian (18) is related
to reduced Gaudin magnet via the identification

S3
j = pjqj , S+

j = q2
j , S−

j = −p2
j +

C2
j

q2
j

,

and with B(λ) given by

B(λ) =

(− 1
4p0 λ + 1

2q0

W1
1
4p0

)
, (20)

and W1 = λ2 − 1
2q0λ + 1

4q2
0 +

∑n
j=1

1
16q2

j − 1
16a0.

The corresponding algebraic curve of genus n + 1 is

ν2 = a(λ)2
(

λ3 +
1
16

a0λ +
1
8
H +

1
32

n∑
i=1

Hi

λ − ai

+
1

256

n∑
i=1

C2
i

(λ − ai)2

)
, (21)

and

Hi = −p0qipi +
1
8
a0q

2
i + q0

(
p2

i +
C2

i

q2
i

)
− 1

4
q0aiq

2
i

− 1
2
ai

(
p2

i +
C2

i

q2
i

)
− 1

2
a2

i q
2
i

− 1
8

∑
k �=i

1
ai − ak

(
(qipk − qkpi)2 − C2

i qk

q2
i

− C2
kqi

q2
k

)
·

The solutions of the system with Hamiltonian (18) in
terms of Novikov polynomials F (x, λ) are given as

q0 = −u, q2
i (x) = 16

F (x, ai)∏n
k �=i(ai − ak)

, i = 1, . . . , n (22)

where the points ai lie in the lacunae [λ2i−1, λ2i], i =
1, . . . n for generalized multidimensional Hénon-Heiles sys-
tem and are branch points in the case multidimensional
Hénon-Heiles system (18) with C2

j = 0, j = 1, . . . , n.

3.3 Neumann and Rosochatius system on the sphere

For the Rosochatius system the Hamiltonian is given by

H =
n∑

j=0

p2
j −

n∑
j=0

(
ajq

2
j +

C̃2
j

q2
j

)
. (23)

The Poisson bracket for this system is modified by
constraining the particles to lie on the sphere, so that

(q, q) ≡
n∑

j=0

q2
j = 1, (q, p) ≡

n∑
j=0

qjpj = 0. (24)

The Lax matrix for the Rosochatius system is defined by
Q(x, λ) = λ + 2

∑n
i=0 q2

i , a(λ) =
∏n

i=0(λ − ai), and

U(x, λ) = a(λ)

(
n∑

i=0

q2
i

λ − ai

)
, V (x, λ) = −1

2
Ux(x, λ)

W (x, λ) = a(λ)

(
1 −

n∑
i=0

1
λ − ai

(p2
i −

C̃2
i

q2
i

)

)
.

The dynamical system with Hamiltonian (23) is related to
reduced Gaudin magnet via the identification

S3
j = pjqj , S+

j = q2
j , S−

j = −p2
j +

C̃2
j

q2
j

,

and with B(λ) given by

B(λ) =

(
0 (q, q)

0 0

)
(25)

where {· ; ·} in (2) is Dirac bracket. The solutions of
the system with Hamiltonian (23) in terms of Novikov
polynomials F (x, λ) are given as [8]

q2
i (x) =

F (x, ai)∏n
k �=i(ai − ak)

, i, k = 0, . . . , n (26)

where the points ai, i = 0, . . . n lie in the lacunae (−∞, λ0],
[λ2j−1, λ2j ], j = 1, . . . n for Rosochatius system and are
branch points in the case of Neumann system (23) with
C2

j = 0, j = 0, . . . , n.



N.A. Kostov: Quasi-periodic solutions for dynamical systems related to KdV 259

4 Conclusions

In this paper we have described a family of quasi-periodic,
elliptic solutions for the dynamical systems related to KdV
equation using a Lax pair method functions. General so-
lutions are quasiperiodic due to quasiperiodic nature of
Its-Matveev formula. Our approach is systematic in the
sense that special solutions (periodic, “soliton”, etc.) are
obtained in a unified way.
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